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J. Phys. A: Math. Gen. 19 (1986) 1027-1032. Printed in Great Britain 

Generating functions for connected embeddings in a lattice: 11. 
Weak embeddings 

M F Sykes 
Wheatstone Physics Laboratory, King’s College, University of London, Strand, London 
WC2R 2LS, UK 

Received 15 July 1985 

Abstract. The method of partial generating functions is developed to enumerate connected 
weak embeddings in a lattice. For the body-centred cubic lattice the number of connected 
weak embeddings of clusters with up to 14 bonds is derived. 

1. Introduction 

In a previous paper (Sykes 1986), hereafter referred to as I, we have described a 
method of generating the number of connected strong embeddings in a lattice; in this 
paper we describe the necessary modifications to generate the number of connected 
weak embeddings. (For precise definitions of these graph theoretical terms see Essam 
and Fisher (1970).) Direct computer enumeration of the number of connected strong 
embeddings of n sites in a lattice for ascending n is very time consuming; the direct 
enumeration of connected weak embeddings of n bonds is even more so. For example, 
for the body-centred cubic lattice we quote the following sequence for the numbers 
of weak embeddings of connected clusters of n bonds, B,, grouped by bondst. 

Bonds n Number of clusters 8, 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

1 
4 

28 
252 

2582 
28 648 

335 272 
4077 228 

51 033 970 
653 295 948 

8514628368 
112616865088 

1507834338200 
20 398 243 646 604 

278402821091304 

t It is, of course, possible to consider also the number of strong embeddings grouped by bonds; these are 
trivially obtained by regrouping the polynomials A , ( b )  of I,  appendix 1. 
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In I we have taken the counting rate of 200 clusters every millisecond, achieved 
by Redelmeier (1981), as a measure of the likely efficiency of direct machine cluster 
enumeration; at this rate the direct counting of B14 would require about 400 000 hours, 
or some 46 years of CPU time. Using the method we describe below the results ( l . l ) ,  
together with information on the number of sites in the clusters, required about 20 min 
of Cray time to perform some algebra. We comment more fully on the validity of this 
comparison in our concluding section. 

The bare numbers of (1.1) are usefully supplemented by more detailed properties. 
We denote by B, the number of connected weak embeddings, or subgraphs, of n 
bonds. Following the same pattern as I we now define a generating function 

F (  b)  = Bo+ B ,  b + B2 b2 + . . . (1.2) 

and more generally 

F ( b , x ) = L B , ( x ) b '  
r 

(1.3) 

where in (1.3) each polynomial B r ( x )  records the site content of the clusters of 
r bonds. For the body-centred cubic lattice the expansion starts 

(1.4) 

and the coefficient of b4 records the fact that out of 2582 connected clusters of four 
bonds, 2570 have five sites and therefore cyclomatic index 0, and 12 have four sites 
and therefore cyclomatic index 1. We give the values of the B, through B,, in 
appendix 1. 

F (  b, x )  = x +4x2b + 28x3b2 + 252x4b3+ ( 2 5 7 0 ~ ~  + 12x4)b4+. . . 

2. Method of partial generating functions 

The method described in I and by Sykes et a1 (1965,1973) for exploiting the equivalence 
of the two sublattices of a n  infinite loose-packed lattice is immediately applicable to 
weak embeddings. It is only necessary to characterise the bond embeddings by the 
sublattice distribution of their sites. Thus equation (1.5) of I has an  analogue: 

(2.1) 
The subscripts in (2.1) now refer to the sites and each B , ,  is a polynomial in b; 

the whole of the formation of 0 2 of I can then be applied, mutatis mutandis. A 
knowledge of the first n partial generating functions enables the number of weak 
embeddings with ( 2 n  + 1) sites to be deduced. 

2F(x ,y)  = B l , o x + B o , l y + B , * , x y + B 2 , 1 X 2 y + .  . .. 

3. Restricted and unrestricted generating functions 

We begin this section by taking as example the finite graph G used before in I to 
illustrate restricted and unrestricted generating functions for strong embeddings: 
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For this graph we can immediately derive an unrestricted subgraph enumerator which 
we write 

G ( Z J K ) =  ( l + 2 b y + b 2 y ) 3 ( 1 + 3 b y + 3 b 2 y + b 3 y )  

= 1 + (9b +6b2+ b3)y  + (30b2+39b3+ 18b4+ 3b5)y2 

+ (44b3 + 84b4+ 63 b5 + 22b6+ 3 b7)y3 

+ (24b4+ 60b5 +62b6+ 33b7+ 9bB+ b9)y4. 

It summarises the site and bond content of all the 512 subgraphs obtained by selecting 
any number of B sites and any (non-zero) number of bonds from each chosen site. 
Again we assume the A sites are always occupied. In using round brackets on the 
left-hand side (3 .1 )  we follow the fairly widespread convention of representing weak 
embeddings by round brackets and strong embeddings by square brackets. As an 
example the term 3b5y2 now corresponds to the subgraphs ( a ) ,  ( b )  and ( c )  illustrated 
below. 

[ U !  i b )  i c  I 

All of these are as it happens also section graphs; an example of an embedding which 
is not a section graph is the subgraph: 

id1 
and this will contribute to the coefficient of b5y3.  The derivation of (3 .1)  only differs 
from that of the corresponding strong embedding in the replacement of each strong 
auxiliary polynomial ( 1  + b'y) for any r-vertex star by a weak auxiliary polynomial 

The restricted (connected) subgraph enumerator for G can also be written down by 
( 1  + { ( I  + 6 ) ' -  1 ) ~ ) .  

inspection (although the work is now quite detailed): 

G*( ZJK) = b3y + ( 14b4+ 3bS)y2  + (46b5 + 21 b6+ 3 b7)y3 

+ (44b6 + 31 b7 +9b8 + b9)y4. (3.2) 
Again we now define partitioned subgraph enumerators exactly analogous to the 
partitioned section graph enumerators of I; for our example these can be written down 
by inspection ast  

G ( I, JK ) = ( 1 + 2 by)3( 1 + 3 by + b 2 y )  

G(J, ZK) = ( 1  + 2 b y ) ( l +  2by + b2y)2(  1 + 3by + b 2 y )  

G(K, ZJ) = ( 1  + 2 b ~ ) ~ ( 1 +  2by + b2y) (  1 + 3by + b2y)  
G( I ,  J, K )  = (1  + 2 b ~ ) ~ ( l + 3 b y ) .  

(3 .3)  

t Exercises of this kind can be performed with facility by anyone with a practical familiarity with generating 
functions; for further guidance see the article by Fisher (1962). 
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Now the whole of the formal argument of I can be repeated simply by replacing square 
brackets by round brackets throughout; we thus have immediately from (3.8) of I: 

G* ( ZJK ) = G( ZJK ) - G( Z, JK ) - G( J, ZK ) - G( K, ZJ) + 2 G( I, J, K ) (3.4) 

and it can be verified by substitution of (3.3) in (3.4) that (3.2) is correct. 
The results (3.3) illustrate an important difference between the partitioned section 

graph and the partitioned subgraph enumerators. While the former can be written as 
products of the simple auxiliary polynomials that occur in the unpartitioned 
enumerator, the latter require the introduction of extra auxiliary polynomials. These 
polynomials are of quite simple structure and we give a full prescription in the next 
section. 

4. Prescription for auxiliary unrestricted subgraph enumerators 

We begin by writing down the auxiliary polynomials that correspond to the first four 
vertex stars. 
First-order vertex star; one A site I :  

$1 = (1 + by)  always. 

Second-order vertex star; two A sites Z, J 

$2.1=(1+26y+b2y) 

4 2 . 2  = (1 +2bY) 
Third-order vertex star; three A sites 1, J, K : 

G3,1 = (1  +3by + 3b2y + b3y) 

$3.2 = ( l + 3 b +  b2y) 

$3.3 = (1 + 3 b )  
Fourth-order vertex star; for A sites I, J, K, L: 

$4.1 = (1 +4by + 6b2y + 4b3y + b4y) 

$4,2 = (1 + 4by + 3b2y + b3y) 

J/4,3 = (1 + 46y + 2b2y) 

if Z, J in same subset of partitioned set 
if Z, J in different subsets of partitioned set. 

if Z, J, K in same subset 

if I,  J, K intersect two subsets 

if Z, J, K intersect three subsets. 

if Z, J, K ,  L in same set 

if I, J,  K ,  L intersect two 
subsets with division 1-3 

division 2-2 

three subsets 

four subsets. 

The form of the general prescription should now be clear. For each partition of the 
Z, J, K .  . . into connectively disjoint subsets, say 

ZJK, MN, PQ. . . , . . . = SI, Sz, S3 , .  . . , SI, . . . 
and a vertex star spanning some set V of Z, J, K ,  . . . denote the cardinality of S, n V by C,.  
Then the corresponding auxiliary polynomial is just 

$ = I +  All 1 I [ ( l+by)C ' - l ]y  

and the corresponding enumerator for the partition is the continued product of all 
such 4 over all the vertex stars. 
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For example consider the specific partition illustrated below of seven A sites and 
three B sites, each latter forming a vertex star of order 3 spanning the A sites as drawn: 

I 
N 
U p I 

J 
U 
I I 

0 
U 

/ 

Applying the above prescription 

G( IJK,  LMN, 0) = (1 + 3 by + 3b2y + b3y)( 1 + 3by + b2y)( 1 + 3by). 

5. Application to the body-centred cubic lattice 

We have applied the technique of the preceding sections to the body-centred cubic 
lattice. The procedure is a straightforward generalisation of that described in § 5 of I 
for the enumeration of strong embeddings. The same basic configurational data are 
required: the specification of all the arrangements of up to six cubes determines the 
first six partial generating functions and these, following § 2 of I and of the present 
paper, determine all the embeddings with up to 13 sites. The actual determination of 
all the products appropriate to each arrangement of cubes is rather more intricate and 
is conveniently done by computer. The partial generating functions for strong embed- 
dings were expressed in I as sets of weighted codes { a, P, y . . .} wherein by convention 
the successive parameters denoted the exponents of the simple auxiliary polynomials 
of 0 3 of I .  For weak embeddings the prescription of § 4 results in a weighted set of 
codes of the more general form: 

PI P ' ,  7, 7'9 Y", .) = ( ~ I ) " ( ~ 2 , 1 ) p ( ( L 2 , 2 ) p ' ( ~ ' 3 , 1 ) y ( ~ 3 , 2 ) y ' ~  (5.1) 
each code corresponding to some product of auxiliary polynomials of type (4.1). 

The number of these weak codes (5.1) at each stage increases more rapidly than 
the corresponding number of strong codes (5.7) of I;  for the body-centred cubic the 
first six partial generating functions contain 1,6,33,206, 1497,12 205 codes respectively. 
The derivation of these codes requires very little extra computing time; however the 
substitution (4.1) and the subsequent expansion of the products of the auxiliary 
polynomials takes longer. The 12 205 sixth-order codes took 20 min to expand using 
the University of London Cray. By exploiting the sublattice symmetry the number of 
weak embeddings with up to 13 sites then follows. The only embeddings of up to 14 
bonds with more than 13 sites correspond to graphs with cyclomatic index 0 or 1; it 
is possible to obtain the number of these by techniques based on the theory of bond 
percolation which we describe in subsequent papers. For completeness we quote the 
full values of B, through n = 14 in the appendix. 

6. Conclusions 

The work described in this paper continues the feasibility study begun in I. By using 
the method of partial generating functions we have been able to produce a table of 
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connected weak embeddings for the body-centred cubic lattice through B14. As we 
have noted in our introduction a direct enumeration by computer would require some 
46 years of CPU time; recently it has proved possible to rederive all the relevant details 
of the arrangements of six cubes used in this paper on the London University Cray 
in 45 minutes CPU time ( J  L Martin and M K Wilkinson, private communication); the 
effective counting rate achieved is thus some 500000 times faster. Our general con- 
clusion reaffirms that of I: If a large amount of machine time is available it would be 
more efficient to use it to derive partial generating functions than to count clusters 
directly. 

Appendix. Weak embeddings of clusters in the body-centred cubic lattice grouped by 
bond and site content 

B o = x  

Bl = 4x2 

B2 = 28x3 

B3 = 252x4 

B4 = 2570x'+ 12x4 

B, = 28 360x6 + 2 8 8 ~ '  

B6 = 329 8 9 2 ~ ~  + 5 3 6 8 ~ ~  + 12X' 

B7 = 3986 292x8+ 90 4 0 8 ~ ~  + 5 2 8 ~ ~  

B8 = 49 568 1 0 7 ~ ~  + 1451 694X8+ 14 1 4 2 ~ ~  + 27X6 

B9 = 630 277 520xI0+ 22 704 304x9+ 312 700x8+ 1 4 2 4 ~ ~  

Blo= 8158 745 828x"+349 603 0 2 0 ~ ' ~ + 6 2 3 2  256x9+47 192x8+72x7 

Bll  = 107 168 136 392xI2+ 5330 879 928x"+ 116 596 6 0 8 ~ "  
+ 1247 456x9 + 4704x8 

BIZ = 1424 941 392 516xI3+ 80 772 408 61Oxl2+ 2091 391 256x" 
+28 963 354xI0+ 1822 214x9+250x8 

B13= 19 142 538 495 54Oxl4+ 1218 664 333 92Oxl3+36 417 087 9 4 4 ~ ' ~  

+618 185 200x1'+5525 940xI0+ 18 056x9+4x8 

BI4 = 259 435 941 941 3 4 0 ~ ' ' +  18 333 838 574 748xI4+ 620 449 516 1 2 8 ~ ' ~  

+ 12 445 699 O84xl2+ 144 569 688x" +789 264x10+ 1052x9 
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